a2 United States Patent

Motta

US009071765B2

US 9,071,765 B2
Jun. 30, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT IMPLEMENTING AN
IMAGE PROCESSING PIPELINE FOR
HIGH-DYNAMIC RANGE IMAGES

Applicant: NVIDIA Corporation, Santa Clara, CA

(US)

Inventor: Ricardo Jansson Motta, Palo Alto, CA
(US)

Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 75 days.

Appl. No.: 13/730,639

Filed: Dec. 28, 2012

Prior Publication Data

US 2014/0184894 A1l Jul. 3, 2014

Int. CI.
HO4N 5/235
HO4N 5/355
HO4N 9/04
USS. CL
CPC ... HO4N 5/2355 (2013.01); HO4N 5/2353
(2013.01); HO4N 5/35554 (2013.01); HO4N
9/045 (2013.01)

(2006.01)
(2011.01)
(2006.01)

Field of Classification Search
CPC HO4N 5/35554; HO4N 5/35572; HO4N
5/2355; HO4N 5/2353

{ Btart

A 4
Receive image sensor data from an interlsaved
image sensor having a first portion and a second
portion
102

A 4
Identify a first subset of pixels in the second
portion having an intensity value above a first
threshold value

A 4
Identify & sacond subseat of pixals in the first
portion having an intensity value below a second
threshold valus
106

L 2

Senerate HDR data based on the first subset and
the second subsel
108

End

USPC .o 348/229.1, 222.1, 218.1, 239
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,483,058 B1* 12009 Franketal. 348/222.1
2008/0219585 Al* 9/2008 Kasaietal. 382/274
2009/0262215 Al* 10/2009 Sano etal. 348/229.1
2012/0262600 Al* 10/2012 Velarde et al. 348/223.1
2013/0033622 Al* 2/2013 Li o 348/241

* cited by examiner

Primary Examiner — Nhan T Tran
Assistant Examiner — Chan Nguyen
(74) Attorney, Agent, or Firm — Zilka-Kotab, PC

(57) ABSTRACT

A system, method, and computer program product for gener-
ating high-dynamic range image data is disclosed. The
method includes the steps of receiving image sensor data
from an interleaved image sensor. The interleaved the image
sensor includes a first portion of pixels exposed for a first
exposure time and a second portion of pixels exposed for a
second exposure time that is shorter than the first exposure
time. The method further includes the steps of identifying a
first subset of pixels in the second portion having an intensity
value above a first threshold value, identifying a second sub-
set of pixels in the first portion having an intensity value
below a second threshold value, and generating high-dy-
namic range (HDR) data based on the first subset and the
second subset.

19 Claims, 9 Drawing Sheets

500

U.S. Patent Jun. 30, 2015 Sheet 1 of 9 US 9,071,765 B2

100

Receive image sensor dala from an interleaved
image sensor having a first portion and a second
portion
162

Identify a first subset of pixels in the sscond
portion having an infensity value above a first
threshold value
164

Identify 2 second subsetl of pixels in the first
portion having an intensity value below a second
threshold value
166

Generate HDR data based on the first subset and
the second subsst
108

v

-

(Erﬁ\)

Fig. 1

U.S. Patent Jun. 30, 2015 Sheet 2 of 9 US 9,071,765 B2

FOO4ON O 8 oo ow o~w o om oW b

Fig. 24

U.S. Patent Jun. 30, 2015 Sheet 3 of 9 US 9,071,765 B2

288 292

293 —

Fig. 2B

U.S. Patent Jun. 30, 2015 Sheet 4 of 9 US 9,071,765 B2

300

50
]
&
=
= 100
=
@
P
& :
‘s
5 150 Lk
e _"'-‘%~.$
3 &
&
- 200
=)
O
2560
[ow] (o] [] L] fan] & fon] o o)
[} < < (=) Q <Q]] j=] o
b [§Y] (2] <t [y} [{¥] P e} [>] <
Even Quad Row Pixel Valuas

Fig. 3

US 9,071,765 B2

Sheet 5 of 9

=T

Jun. 30, 2015

U.S. Patent

—_—_—e— e e e e e e e e e e e e e e e e e e o o — — — — — — — — —— —— —— —— o —— —— — — ———— — ———————— ———— —

06¥b
JOPULMBIA
e et 1
I
I
I
007 suliadid “
%% Buisseaoig ebeuy “
UDHDBLI0D "
ousy |
I
I
I
I
I
I
I
I
S— 5% S — Oi¥ ! {374
mp:ewwc Buieng om,w S VMMMEQ Bussanoid “ HOSUBG
Hiposus she 8l e S -8 ! sheu
I
I
I

U.S. Patent

Jun. 30, 2015 Sheet 6 of 9

Fig. 54

508 504
NN

US 9,071,765 B2

500

510

U.S. Patent Jun. 30, 2015 Sheet 7 of 9 US 9,071,765 B2

PPU 800

Host interface Unit
618

1O Unit
605 Grid Management Unit
618

!

Work Distribution Unit
620

System Bus 602

L
|
|

SM B500X) |
|
|
|
|

Crossbar 880 l—

!

L2 Cache 665

Memory Interface 880{(U} I

U.S. Patent

Jun. 30, 2015 Sheet 8 of 9 US 9,071,765 B2
SM 850
instruction Cache 705
Scheduler Unit 710(K) ‘,:
|
I
)
Dispatch 715 Dispatch 715 !
)
I
—————————————————)
e e e e e e e - 4
Register File 720 «——

3 L L 3
Core |1, | DPU |1 SFU |1 Lsu |1
750(L :: 751(M} :: 752(N} :: 753(P} ::
———&———-| ———&———-.| ———&———u!| ———&——=-|
Interconnect Network 730

!

Shared Memory/L1 Cache 770

:

¢

Texiure
Unit
790

Texiure
Unit
790{1}

{

Texiure
Unit
79000

Fig. 7

U.S. Patent

BUS
802

Jun. 30, 2015

Sheet 9 of 9

CENTRAL
PROCESSOR
801

MAIN MEMORY
804

INPUT DEVICES
812

SECONDARY
STORAGE
810

GRAPHICS
PROCESSOR
808

It

DISPLAY
808

Fig. 8

US 9,071,765 B2

800

US 9,071,765 B2

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT IMPLEMENTING AN
IMAGE PROCESSING PIPELINE FOR
HIGH-DYNAMIC RANGE IMAGES

FIELD OF THE INVENTION

The present invention relates to image processing, and
more particular any to an image processing pipeline coupled
to an image sensor.

BACKGROUND

Digital photographs may be captured today using a variety
of' image sensors (e.g., CMOS (complementary metal-oxide
semiconductor) image sensors and CCD (charge coupled
device) image sensors. Camera functionality is commonly
included in today’s mobile devices. For example, many cel-
Iular telephones such as the Apple® iPhone and the
Motorola® Droid include an integrated image sensor that a
user may use to capture digital images for transmission or
storing on the mobile device. Design of these compact camera
system is complicated by the fact that some scenes may
exhibit a large degree of contrast (i.e., difference in the degree
of intensity between pixels). In other words, within a single
scene, some areas of the scene may be well-lit while other
areas of the scene are masked in shadow. For example, when
a user takes a picture outdoors, the scene may contain some
objects in direct sunlight and other objects that are shielded
from the sun.

CMOS image sensors used in mobile devices have a lim-
ited dynamic range. Each pixel site in the CMOS image
sensor functions like a capacitor, capturing photons focused
on the image sensor by a lens during an exposure and building
up a charge. The amount of charge developed at a particular
pixel site is dependent on the well-capacity of the pixel sen-
sor. For example, CMOS pixels approximately 1.4 um in size
have a well-capacity of approximately 5000 electrons. Once
the pixel site has built up a charge equivalent to 5000 elec-
trons, the pixel site is incapable of capturing any further
information about the brightness of the scene. The upper limit
of'the dynamic range is governed by the well capacity, and the
discrete nature of light. Shot-noise limits the highest signal-
to-noise ratio (SNR) of the sensor to the square root of the
maximum signal, or about 36 dB in our 5000 electron
example. The lower limit of the dynamic range is governed by
read noise and quantization. Even in the absence of read-
noise, the charge on the pixel is sampled to a discrete digital
value; e.g., a 10-bit value. The charge for a pixel may be
digitized using a 10-bit ADC (analog-to-digital converter) to
generate a value between 0 and 1023.

As described above, the image sensor is only capable of
measuring a limited dynamic range of light. Thus, the infor-
mation captured by the image sensor is dependent on the
exposure time. Using a fast exposure time may prevent bright
areas of the scene from saturating the corresponding pixel
sites. However, detailed information in darker areas of the
scene may be lost because the signal in these areas is weak.
Conversely, by extending the exposure time, details in the
darker areas of the scene may become visible, but the brighter
areas of the scene may become overexposed.

One technique for generating images with high-dynamic
range (HDR) is to capture two images of the same scene using
different exposure times. Conventionally, a first image is cap-
tured with one exposure time and then a second image is
captured with a second exposure time. Once the images are
captured, an image processing pipeline combines the two

10

15

20

25

30

35

40

45

50

55

60

65

2

images to generate a scene with a dynamic range that is larger
than the image sensor is capable of capturing during a single
exposure. Recently, interleaved image sensors have been
developed that capture two images with different exposure
times substantially simultaneously. In effect, the interleaved
image sensor captures one image of the scene using two
different but simultaneous exposure times interleaved
throughout the image sensor.

Some image processing algorithms for generating images
using interleaved image sensors sacrifice spatial resolution to
generate HDR images. For example, a first image may be
generated using half the pixels and a second image may be
generated using the other half of the pixels. The first image
and the second image are then blended to generate an HDR
image at half the vertical resolution. Thus, there is a need for
addressing this issue and/or other issues associated with the
prior art.

SUMMARY

A system, method, circuit design and computer program
product for generating high-dynamic range image data is
disclosed. The method includes the steps of receiving image
sensor data from an interleaved image sensor. The interleaved
the image sensor includes a first portion of pixels exposed for
a first exposure time and a second portion of pixels exposed
for a second exposure time that is shorter than the first expo-
sure time. The method may further include the steps of iden-
tifying a first subset of pixels in the second portion having an
intensity value above a first threshold value, identifying a
second subset of pixels in the first portion having an intensity
value below a second threshold value, and generating high-
dynamic range (HDR) data based on the first subset and the
second subset.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method for generating
images, in accordance with one embodiment;

FIG. 2A illustrates an interleaved image sensor, in accor-
dance with one embodiment;

FIG. 2B illustrates the relationship between HDR data and
image sensor data, in accordance with one embodiment;

FIG. 3 is a scatterplot that illustrates the relationship
between pixels in odd quad rows and pixels in even quad rows
of the interleaved image sensor, in accordance with one
embodiment;

FIG. 4 illustrates an image processing pipeline coupled to
the interleaved image sensor of FIG. 2, in accordance with
one embodiment;

FIG. 5A illustrates a filter for generating pixel values for
underexposed or overexposed pixels, in accordance with one
embodiment;

FIG. 5B illustrates a filter for generating pixel values for
underexposed or overexposed pixels, in accordance with
another embodiment;

FIG. 6 illustrates a parallel processing unit, according to
one embodiment;

FIG. 7 illustrates the streaming multi-processor of FIG. 6,
according to one embodiment; and

FIG. 8 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DETAILED DESCRIPTION

An image processing pipeline for use with an interleaved
image sensor is described more fully below. The image pro-

US 9,071,765 B2

3

cessing pipeline includes a pre-processing engine that trans-
forms the image sensor data received from the interleaved
image sensor into HDR data that is companded (compressed-
expanded) and then transmitted to a conventional image sig-
nal processor (ISP) for further processing. The conventional
ISP implements various functions such as noise reduction,
lens-shading correction, demosaicing, color space conver-
sion, gamma correction, chroma sub-sampling, encoding,
and so forth. The image processing pipeline may be imple-
mented in software, hardware, or combinations thereof. In
one embodiment, the image processing pipeline may be
implemented as a hardware engine included in a system-on-
chip (SoC) such as an NVIDIA® Tegra application processor.
In another embodiment, the image processing pipeline may
be implemented in software executed by a processing unit
such as a central processing unit (CPU). In yet another
embodiment, the image processing pipeline may be imple-
mented in software executed by a highly parallel processing
architecture such as a graphics processing unit (GPU).

FIG. 1 illustrates a flowchart of a method 100 for generat-
ing HDR images, in accordance with one embodiment. At
step 102, a pre-processing engine receives image sensor data
from an interleaved image sensor. The image sensor data
includes a first portion of pixels exposed for a first exposure
time and a second portion of pixels exposed for a second
exposure time. The first exposure time is greater than the
second exposure time. At step 104, the pre-processing engine
identifies a first subset of pixels in the second portion having
an intensity value above a first threshold value. The first
subset of pixels represents pixels in the second portion that
have neighboring pixels in the first portion that may be
invalid. In one embodiment, the pre-processing engine gen-
erates a mask that includes a value (e.g., 0 or 1) that identifies
whether the corresponding pixel is included in the first subset.
At step 106, the pre-processing engine identifies a second
subset of pixels in the first portion having an intensity value
below a second threshold value. The second subset of pixels
represents pixels in the first portion that have neighboring
pixels in the second portion that may be invalid. Again, in one
embodiment, the pre-processing engine generates a mask that
includes a value (e.g., O or 1) that identifies whether the
corresponding pixel is included in the second subset. At step
108, the pre-processing engine generates HDR data based on
the first subset and the second subset. It should be noted that,
while various optional features are set forth herein in connec-
tion with the method for generating HDR images set forth
above, such features are for illustrative purposes only and
should not be construed as limiting in any manner.

FIG. 2A illustrates an interleaved image sensor 200, in
accordance with one embodiment. The image sensor 200
includes a plurality of pixels 210 arranged in a two-dimen-
sional (2D) array. In one embodiment, the image sensor 200
includes a color filter array (CFA) overlaid on the plurality of
pixels 210. The CFA may be configured such that a first subset
of pixels is associated with a first color filter, a second subset
of pixels is associated with a second color filter, and a third
subset of pixels is associated with a third color filter. For
example, a Bayer pattern CFA implements a recurring 2x2
pattern of red, green, and blue color filters, with each 2x2
array of pixels overlaid with two green color filters, one red
color filter, and one blue color filter. As shown in FIG. 2A, the
first row of pixels alternates green and blue color filters and
the second row of pixels alternates red and green color filters,
the third row of pixels alternates green and blue color filters
and the fourth row of pixels alternates red and green color
filters, and so forth. Each pair of rows is referred to herein as
aquadrow (e.g., a first quad row 221, a second quad row 222,

10

15

20

25

30

35

40

45

50

55

60

65

4

etc.). In other embodiments, different CFAs may be imple-
mented as part of the interleaved image sensor 200 such as
RGBE, RGBW, or CYGM CFAs.

Unlike a conventional CMOS image sensor, image sensor
200 is an interleaved image sensor. With a conventional
CMOS image sensor, the rows of the image sensor 200 are
reset in sequential order. The image sensor is exposed to light
for an exposure time, thereby building up a charge at each of
the pixel sites. The charge built up at each pixel site is
approximately proportional to the intensity of light striking
the pixel site relative to each of the other pixel sites. Once the
exposure time has elapsed, the rows of the image sensor are
sampled in sequential order to generate an array of values that
represent the intensity of light for each pixel in a digital
image. In contrast, the interleaved image sensor 200 samples
the pixels based on multiple exposure times. In one embodi-
ment, the odd quad rows (i.e., 221, 223, 225, 227, etc.) of the
image sensor 200 are reset in sequential order at a first reset
time. Similarly, the even quad rows (i.e., 222, 224, 226, 228,
etc.) of the image sensor 200 are reset in sequential order at a
second reset time. The odd quad rows and even quad rows of
the image sensor 200 are read at a sampling time. The differ-
ence between the sampling time and the first reset time is
equal to a first exposure time and the difference between the
sampling time and the second reset time is equal to a second
exposure time that is less than the first exposure time. Con-
sequently, the pixels 210 included in the odd quad rows com-
prise a first portion 231 of the pixels 210 included in the image
sensor 200, which correspond to a long exposure time, and the
pixels 210 included in the even quad rows comprise a second
portion 232 of the pixels 210 included in the image sensor
200, which correspond to a short exposure time. The pixels in
the first portion 231 capture more detailed information about
the darker areas of the scene and the pixels in the second
portion 232 contain more detailed information about the
brighter areas of the scene. It will be appreciated that, in other
embodiments, all of the pixels may be reset at a reset time, the
pixels in the even quad rows may be read after a second
exposure time has elapsed since the reset time, and the pixels
in the odd quad rows may be read after a first exposure time
has elapsed since the reset time, where the first exposure time
is longer than the second exposure time.

FIG. 2B illustrates the relationship between HDR data 292
and image sensor data 290, in accordance with one embodi-
ment. As described above, the interleaved image sensor 200
generates image sensor data 290 comprising a first portion
231 sampled from odd quad rows and a second portion 232
sampled from even quad rows, both having the same dynamic
range. At certain locations in the image, neighboring pixels
will capture light from the same object at different intensity
levels corresponding to the different exposure times. For
example, the first pixel in the third row of the image sensor
(i.e., pixel 291) may capture a green object at an intensity
level 01 102 (out 0f 1023) due to the short exposure time of the
even quad rows. However, the first pixel in the fifth row of the
image sensor (i.e., pixel 295) may capture the same green
object at an intensity level of approximately 816 (out of 1023)
due to the long exposure time of odd quad rows. Given that
both pixels are neither underexposed nor overexposed, the
neighboring pixels capture details about the object at different
spatial locations, but at different levels of intensity related to
the exposure ratio.

The pre-processing engine intelligently samples and filters
values from the raw image sensor data in order to generate the
HDR data 292, which is a combination of values from the first
portion 231, scaled values from the second portion 232, fil-
tered values based on one or more sample values in the first

US 9,071,765 B2

5

portion 231, and filtered values based on one or more sample
values in the second portion 232. For each pixel in the HDR
data 292, the pre-processing engine generates an intensity
value for the pixel based on an intensity value of a corre-
sponding pixel in the image sensor data 290. If the corre-
sponding pixel is included in the first portion 231, then the
intensity value of the pixel in the HDR data 292 is set equal to
the intensity value of the corresponding pixel. If the corre-
sponding pixel is included in the second portion 232, then the
intensity value of the pixel in the HDR data 292 is set equal to
a scaled version of the intensity value of the corresponding
pixel. In one embodiment, the intensity value of the corre-
sponding pixel in the second portion 232 is scaled by the
exposure ratio (i.e., the ratio of the first exposure time to the
second exposure time). It will be appreciated that scaling by
the exposure ratio may require additional bits in the HDR data
292. For example, for an exposure ratio of 8, an additional 3
bits are needed to scale the intensity values of the second
portion 232 by 8.

In another embodiment, instead of scaling the intensity
value of corresponding pixels in the second portion 232 by the
exposure ratio, the pre-processing engine scales intensity val-
ues of corresponding pixels in the first portion 231 by the
inverse of the exposure ratio. In such an embodiment, the
HDR data 292 has the same bit-depth as the image sensor data
290. While, some information may be lost by scaling the
values down rather than scaling values up, an additional step
of reducing the bit-depth of the HDR data 292 (e.g., via
companding) is not required in order to process the HDR data
292 by a conventional ISP.

The HDR data 292 may include some invalid values. For
example, a pixel 293 in the HDR data 292 has an index
associated with a corresponding pixel 295 in the image sensor
data 290. The pre-processing engine may determine whether
the value for corresponding pixel 295 in the first portion 231
is valid based on a neighboring pixel 296 in the second portion
232. If the intensity level of a neighboring pixel 296, in the
second portion 232, is above a threshold level, t,, which
indicates that pixel 295 may be invalid as overexposed, then
the pre-processing engine may determine a new value for the
pixel based on one or more neighboring pixels within the
second portion. In one embodiment, the threshold t, is set
equal to a maximum threshold t, multiplied by the inverse of
the exposure ratio (i.e., t,=t,/r,=1023/8=128). It will be
appreciated that an intensity value for a pixel in the second
portion 232, which represent values based on a short exposure
time, may be located near neighboring pixels in the first
portion that have intensity values that are approximately
equal to the intensity level for the pixel in the second portion
232 multiplied by the exposure ratio. Because t, multiplied by
the exposure ratio is equal to the maximum intensity level of
the image sensor 200, neighboring pixels in the first portion
231 captured using a longer exposure time may have satu-
rated the image sensor 200. Similarly neighboring pixels in
the second portion 232 captured using a shorter exposure time
may be underexposed when pixels in the first portion 231 are
below a different threshold value (such as a minimum thresh-
old t, multiplied by the exposure ratio).

To correct for overexposed pixels in the first portion 231,
the pre-processing engine identifies neighboring pixels in the
second portion 232 that have intensity values above a first
threshold value. To correct for underexposed pixels in the
second portion 232, the pre-processing engine identifies
neighboring pixels in the first portion 231 that have intensity
values below a second threshold value. Then, for each pixel in
the HDR data 292, the pre-processing engine determines
whether a neighboring pixel of the corresponding pixel in the

30

40

45

6

image sensor data 290 is above the first threshold value or
below the second threshold value. In other words, the pre-
processing engine determines whether a neighboring pixel of
the corresponding pixel is included in the first subset or the
second subset. If the neighboring pixel is included in the first
subset, then a new value for the pixel in the HDR data 292 is
generated by filtering one or more values from neighboring
pixels in the second portion 232 and scaling the filtered value
by the exposure ratio. If the neighboring pixel is included in
the second subset, then a new value for the pixel in the HDR
data 292 is generated by filtering one or more values from
neighboring pixels in the first portion 231.

It will be appreciated that the resulting HDR data com-
prises areas of the scene at low resolution meshed with areas
of'the scene at high resolution. Low resolution areas are those
areas comprising filtered results because at least some of the
pixels in the area were underexposed or overexposed in one of
the exposures. High resolution areas are those areas compris-
ing results calculated from pixels that were neither under
exposed nor overexposed during both exposures. It will be
appreciated that the pixels in the image sensor data 292 can be
classified as part of three distinct groups: a first group that
includes pixels that have neighboring pixels in the first subset,
which indicates that a pixel of the HDR data 292 is generated
by filtering one or more values from the second portion 232;
a second group that includes pixels that have neighboring
pixels in the second subset, which indicates that a pixel of the
HDR data 292 is generated by filtering one or more values
from the first portion 231; and a third group that includes
pixels that have neighboring pixels that aren’t in the first
subset or the second subset, which indicates that a pixel of the
HDR data 292 is generated by either scaling a pixel in the
second portion 232 or selecting a value from the first portion
231.

In another embodiment, the pre-processing engine may
identify a third subset of pixels in the second portion 232 that
is above a third threshold value but below the first threshold
value. The third subset indicates neighboring pixels in the
second portion 232 that may be near pixels that are close to
overexposed. The pre-processing engine may also identify a
fourth subset of pixels in the first portion 231 that is below a
fourth threshold value but above the second threshold value.
The fourth subset indicates neighboring pixels in the first
portion 231 that may be near pixels that are close to under-
exposed. The pre-processing engine determines whether a
neighboring pixel of the corresponding pixel is included in
the third subset or the fourth subset. If the neighboring pixel
is included in the third subset, then a new value for the pixel
in the HDR data 292 is generated by filtering one or more
values from neighboring pixels in the second portion 232 and
scaling the filtered value by the exposure ratio to generate a
first intermediate result. The pre-processing engine then
blends the first intermediate result with the intensity value of
the corresponding pixel in the first portion 231. In one
embodiment, the blending comprises a linear interpolation
between the first intermediate result and the intensity value of
the corresponding pixel based on the intensity value of the
neighboring pixel. Similarly, if the neighboring pixel is
included in the fourth subset, then a new value for the pixel in
the HDR data 292 is generated by filtering one or more values
from neighboring pixels in the first portion 231 to generate a
first intermediate result. The pre-processing engine then
blends the first intermediate result with a scaled version of the
intensity value of the corresponding pixel in the second por-
tion 232.

It will be appreciated that the pixels in the image sensor
data 290, for such an embodiment, can be classified as part of

US 9,071,765 B2

7

five distinct groups: a first group that includes pixels that have
neighboring pixels in the first subset, which indicates that a
pixel of the HDR data 292 is generated by filtering one or
more values from the second portion 232; a second group that
includes pixels that have neighboring pixels in the second
subset, which indicates that a pixel of the HDR data 292 is
generated by filtering one or more values from the first por-
tion 231; a third group that includes pixels that have neigh-
boring pixels in the third subset, which indicates that a pixel
of the HDR data 292 is generated by blending a scaled and
filtered value from the second portion 232 and a value from
the first portion 231; a fourth group that includes pixels that
have neighboring pixels in the fourth subset, which indicates
that a pixel of the HDR data 292 is generated by blending a
filtered value from the first portion 231 and a scaled value
from the second portion 232; and a fifth group that includes
pixels that have neighboring pixels that aren’t in the first
subset, second subset, third subset, or fourth subset, which
indicates that a pixel of the HDR data 292 is generated by
either scaling a pixel in the second portion 232 or selecting a
value from the first portion 231.

FIG. 3 is a scatterplot 300 that illustrates the relationship
between pixels in odd quad rows and pixels in even quad rows
of the interleaved image sensor 200, in accordance with one
embodiment. As described above, pixels in odd quad rows
(e.g., 221, 223, 225, 227, etc.) are associated with a first
exposure time and pixels in even quad rows (e.g., 222, 224,
226, 228, etc.) are associated with a second exposure time.
The scatterplot 300 relates the intensity level of pixels of a
particular channel with adjacent pixels associated with the
same channel (i.e., the same color). A different scatterplot 300
may be plotted for each channel in the CFA of the interleaved
image sensor 200.

As shown in FIG. 3, the scatterplot 300 illustrates an expo-
sure ratio (r,) of approximately 8 (i.e., the first exposure time
is approximately 8 times longer than the second exposure
time). The relationship between the intensity level of neigh-
boring pixels is approximately linear (i.e., y=ax+b). For
example, as shown in the scatterplot 300 of FIG. 3, the slope
of a line fit to the sample points in the scatterplot 300 is
approximately equal to the exposure ratio. In scatterplot 300,
the minimum intensity level is approximately 45 and the
maximum intensity level is approximately 1023. Further-
more, an intensity value above approximately 167 (i.e., 45+
(1023-45)/r,) in an even quad row (i.e., the second portion
232) indicates that there is likely an overexposed pixel in an
adjacent odd quad row (i.e., the first portion 231), and an
intensity value below approximately 360 (i.e., 45%r,) in an
odd quad row (i.e., the first portion 231) indicates that there is
likely an underexposed pixel in an adjacent even quad row
(i.e. the second portion 232) for a similar object.

In one embodiment, the relationship between intensity val-
ues for pixels in odd quad rows and neighboring pixels in even
quad rows, as plotted in scatterplot 300, may be used to define
an exposure ratio for the interleaved image sensor 200. The
image sensor 200 may be calibrated during manufacture by
capturing images of scenes with standard lighting. For
example, a digital camera with the image sensor 200 may be
placed in a light box and exposed to an evenly lit surface
having different colors thereon. The image sensor 200 is
exposed using two different exposure times for the odd quad
rows and the even quad rows. Then, the values of various
sample pixels are input to a linear regression algorithm to find
an exposure ratio for the image sensor 200.

FIG. 4 illustrates an image processing pipeline 400 coupled
to the interleaved image sensor 200 of FIG. 2, accordance
with one embodiment. The image processing pipeline 400

5

10

15

20

25

30

35

40

45

50

55

60

8

includes a pre-processing engine 410, a companding engine
420, a conventional ISP 430, a tone correction engine 440, an
image scaling engine 450, and an encoding engine 460. The
interleaved image sensor 200 generates image sensor data
sampled based on two different exposure times, a short expo-
sure and a long exposure. The pre-processing engine 410
receives the image sensor data and generates HDR data, as
described above.

In one embodiment, the image processing pipeline 400
includes a companding engine 420. The companding engine
420 reduces the amount of bits used per intensity value in the
HDR data 292 in anon-linear manner such that a conventional
ISP 430 may be implemented downstream to process the
HDR data 292. In other words, more bits are used to distin-
guish between lower levels of the signal than bits that are used
to distinguish between higher levels of the signal. Conceptu-
ally, the companding engine 420 is implemented so that a
conventional ISP 430 may be used in the image processing
pipeline 400. In other words, if the companding engine 420
were not implemented, then an ISP configured to process,
e.g., 10-bit data could not operate on the HDR data 292 with
the expanded, e.g., 13-bit dynamic range. Rather than scaling
the HDR data back to the 10-bit dynamic range, which would
cause a loss of information, the companding engine 420 is
implemented to compress the HDR data 292 in a non-linear
manner that avoids unnecessary loss of information. The
companding engine 420 may scale the HDR data 292 down to
the original LDR dynamic range for further processing by a
conventional ISP 430. In another embodiment, the compand-
ing engine 420 is not included in the image processing pipe-
line 400 and ISP 430 is configured to process the HDR data
292 at the higher bitwidth.

The ISP 430 may implement a number of functions typi-
cally implemented in a conventional ISP. For example, the
ISP 430 may implement functions for performing noise
reduction, color conversion, gamma correction, and the like.
Because the image processing pipeline 400 operates on data
that has been compressed in a non-linear fashion via the
companding engine 420, the image processing pipeline 400
may include a tone correction engine 440 that compensates
for the non-linearity of the compression.

The image processing pipeline 400 also includes an image
scaling engine 450, which may be connected to a viewfinder
490. The image scaling engine 450 can be configured to
generate scaled versions of the HDR data at resolutions that
are different than the full resolution of the image sensor 200.
The viewfinder 490 may display the HDR image in real time.
The image scaling engine 450 is also coupled an encoding
engine 460, which is configured to encode the uncompressed
image data for storage in a memory. The encoding engine 460
may implement any number of codecs for image compression
known in the art, including the JPEG (Joint Picture Experts
Group) codec.

FIG. 5A illustrates a filter 500 for generating pixel values
for underexposed or overexposed pixels, in accordance with
one embodiment. When pre-processing engine 410 deter-
mines that a corresponding pixel 501 in the image sensor data
290 is included in the first portion 231, the pre-processing
engine 410 checks a neighboring pixel 503 to determine
whether the neighboring pixel 503 is included in the first
subset (i.e., has an intensity value above a threshold value). If
the neighboring pixel 503 is included in the first subset, then
an intensity value for the pixel in the HDR data 292 is gen-
erated by filtering one or more values in the second portion
232. In one embodiment, because corresponding pixel 501 is

US 9,071,765 B2

9

located in the first odd quad row of the image sensor 200, the
filtered value will be based on a single sample in the second
portion 232, e.g., pixel 503.

Similarly, as shown in FIG. 5A, when pre-processing
engine 410 determines that a corresponding pixel 503 in the
image sensor data 290 is included in the second portion 232,
the pre-processing engine 410 checks a neighboring pixel 501
to determine whether the neighboring pixel 501 is included in
the second subset (i.e., has an intensity value below a thresh-
old value). If the neighboring pixel 501 is included in the
second subset, then the pre-processing engine generates an
intensity value for the pixel in the HDR data 292 by filtering
one or more values in the first portion 231. In one embodi-
ment, the pre-processing engine 410 implements a filter 500
by interpolating between two sample values for neighboring
pixels in quad rows directly above and below the correspond-
ing pixel 503. For example, for a pixel in the HDR data 292
corresponding with pixel 503, pre-processing engine 410
would check to determine whether neighboring pixel 501 is
below a threshold value. If the intensity value for pixel 501 is
below the threshold value, then the pre-processing engine 410
generates an intensity value for the pixel based on an inter-
polation between pixel 501 and pixel 502.

FIG. 5B illustrates a filter 510 for generating pixel values
for underexposed or overexposed pixels, in accordance with
another embodiment. Unlike the filter 500, shown in F1IG. 5A,
filter 510 samples more than two values in adjacent quad rows
to generate the intensity value for the pixel. As shown in FIG.
5B, for a corresponding pixel 503, when the pre-processing
engine determines that a neighboring pixel 506 is included in
the second subset, then the pre-processing engine generates
an intensity value for the corresponding pixel 503 in the HDR
data 292 by filtering four neighboring pixels (e.g., 501, 502,
504, and 505) in adjacent quad rows. The intensity value is
generated by sampling the intensity value of the four neigh-
boring pixels and taking an average of the four values. It will
be appreciated that other types of filters may be applied to
generate intensity value for pixels that have neighboring pix-
els in the first subset or the second subset. For example, a filter
that implements a Gaussian convolution kernel may be imple-
mented that samples a plurality of intensity values from pixels
within a filter window surrounding the corresponding pixel.
In yet another embodiment, a filter may select the nearest
neighboring pixel in the quad row directly above or below the
corresponding pixel.

Again, the image processing pipeline 400 described above,
and specifically the pre-processing engine 410, may be imple-
mented in software, hardware, or combinations thereof. In
one embodiment, portions of the image processing pipeline
400 may be implemented as a shader program configured to
execute on a parallel processing unit such as a GPU. An
exemplary parallel processing unit is set forth below. In one
embodiment, the GPU is a general purpose graphics process-
ing unit (GPGPU) that is configured to perform calculations
traditionally performed by a CPU. Although the parallel pro-
cessing unit of FIG. 6 is described along with a number of
features, such features are set forth for illustrative purposes
only and should not be construed as limiting in any manner.

FIG. 6 illustrates a parallel processing unit (PPU) 600,
according to one embodiment. While a parallel processor is
provided herein as an example of the PPU 600, it should be
strongly noted that such processor is set forth for illustrative
purposes only, and any processor may be employed to supple-
ment and/or substitute for the same. In one embodiment, the
PPU 600 is configured to execute a plurality of threads con-
currently in two or more streaming multi-processors (SMs)
650. A thread (i.e., a thread of execution) is an instantiation of

30

40

45

10

a set of instructions executing within a particular SM 650.
Each SM 650, described below in more detail in conjunction
with FIG. 7, may include, but is not limited to, one or more
processing cores, one or more load/store units (LSUs), a
level-one (L.1) cache, shared memory, and the like.

In one embodiment, the PPU 600 includes an input/output
(I/O) unit 605 configured to transmit and receive communi-
cations (i.e., commands, data, etc.) from a central processing
unit (CPU) (not shown) over the system bus 602. The I/O unit
605 may implement a Peripheral Component interconnect
Express (PCle) interface for communications over a PCle
bus. In alternative embodiments, the [/O unit 605 may imple-
ment other types of well-known bus interfaces.

The PPU 600 also includes a host interface unit 610 that
decodes the commands and transmits the commands to the
grid management unit 615 or other units of the PPU 600 (e.g.,
memory interface 680) as the commands may specify. The
host interface unit 610 is configured to route communications
between and among the various logical units of the PPU 600.

In one embodiment, a program encoded as a command
stream is written to a bufter by the CPU. The buffer is a region
in memory, e.g., memory 604 or system memory, that is
accessible (i.e., read/write) by both the CPU and the PPU 600.
The CPU writes the command stream to the buffer and then
transmits a pointer to the start of the command stream to the
PPU 600. The host interface unit 610 provides the grid man-
agement unit (GMU) 615 with pointers to one or more
streams. The GMU 615 selects one or more streams and is
configured to organize the selected streams as a pool of pend-
ing grids. The pool of pending grids may include new grids
that have not yet been selected for execution and grids that
have been partially executed and have been suspended.

A work distribution unit 620 that is coupled between the
GMU 615 and the SMs 650 manages a pool of active grids,
selecting and dispatching active grids for execution by the
SMs 650. Pending grids are transferred to the active grid pool
by the GMU 615 when a pending grid is eligible to execute,
i.e., has no unresolved data dependencies. An active grid is
transferred to the pending pool when execution of the active
grid is blocked by a dependency. When execution of a grid is
completed, the grid is removed from the active grid pool by
the work distribution unit 620. In addition to receiving grids
from the host interface unit 610 and the work distribution unit
620, the GMU 610 also receives grids that are dynamically
generated by the SMs 650 during execution of a grid. These
dynamically generated grids join the other pending grids in
the pending grid pool.

In one embodiment, the CPU executes a driver kernel that
implements an application programming interface (API) that
enables one or more applications executing on the CPU to
schedule operations for execution on the PPU 600. An appli-
cation may include instructions (i.e., API calls) that cause the
driver kernel to generate one or more grids for execution. In
one embodiment, the PPU 600 implements a SIMD (Single-
Instruction, Multiple-Data) architecture where each thread
block (i.e., warp) in a grid is concurrently executed on a
different data set by different threads in the thread block. The
driver kernel defines thread blocks that are comprised of k
related threads, such that threads in the same thread block
may exchange data through shared memory. In one embodi-
ment, a thread block comprises 32 related threads and a grid
is an array of one or more thread blocks that execute the same
stream and the different thread blocks may exchange data
through global memory.

In one embodiment, the PPU 600 comprises X SMs 650
(X). For example, the PPU 600 may include 15 distinct SMs
650. Each SM 650 is multi-threaded and configured to

US 9,071,765 B2

11

execute a plurality of threads (e.g., 32 threads) from a par-
ticular thread block concurrently. Each of the SMs 650 is
connected to a level-two (1.2) cache 665 via a crossbar 660 (or
other type of interconnect network). The .2 cache 665 is
connected to one or more memory interfaces 680. Memory
interfaces 680 implement 16, 32, 64,128-bit data buses, or the
like, for high-speed data transfer. In one embodiment, the
PPU 600 comprises U memory interfaces 680(U), where each
memory interface 680(U) is connected to a corresponding
memory device 604(U). For example, PPU 600 may be con-
nected to up to 6 memory devices 604, such as graphics
double-data-rate, version 5, synchronous dynamic random
access memory (GDDRS SDRAM).

In one embodiment, the PPU 600 implements a multi-level
memory hierarchy. The memory 604 is located off-chip in
SDRAM coupled to the PPU 600. Data from the memory 604
may be fetched and stored in the 1.2 cache 665, which is
located on-chip and is shared between the various SMs 650.
In one embodiment, each of the SMs 650 also implements an
L1 cache. The L1 cache is private memory that is dedicated to
a particular SM 650. Each of the L1 caches is coupled to the
shared L2 cache 665. Data from the L2 cache 665 may be
fetched and stored in each of the L1 caches for processing in
the functional units of the SMs 650.

In one embodiment, the PHI 600 comprises a graphics
processing unit (GPU). The PPU 600 is configured to receive
commands that specify shader programs for processing
graphics data. Graphics data may be defined as a set of primi-
tives such as points, lines, triangles, quads, triangle strips, and
the like. Typically, a primitive includes data that specifies a
number of vertices for the primitive (e.g., in a model-space
coordinate system as well as attributes associated with each
vertex of the primitive. The PPU 600 can be configured to
process the graphics primitives to generate a frame buffer
(i.e., pixel data for each of the pixels of the display). The
driver kernel implements a graphics processing pipeline, such
as the graphics processing pipeline defined by the OpenGL
APL

An application writes model data for a scene (i.e., a col-
lection of vertices and attributes) to memory. The model data
defines each of the objects that may be visible on a display.
The application then makes an API call to the driver kernel
that requests the model data to be rendered and displayed. The
driver kernel reads the model data and writes commands to
the buffer to perform one or more operations to process the
model data. The commands may encode different shader
programs including one or more of a vertex shader, shader,
geometry shader, pixel shader, etc. For example, the GMU
615 may configure one or more SMs 650 to execute a vertex
shader program that processes a number of vertices defined
by the model data. In one embodiment, the GMU 615 may
configure different SMs 650 to execute different shader pro-
grams concurrently. For example, a first subset of SMs 650
may be configured to execute a vertex shader program while
a second subset of SMs 650 may be configured to execute a
pixel shader program. The first subset of SMs 650 processes
vertex data to produce processed vertex data and writes the
processed vertex data to the 1.2 cache 665 and/or the memory
604. After the processed vertex data is rasterized (i.e., trans-
formed from three-dimensional data into two-dimensional
data in screen space) to produce fragment data, the second
subset of SMs 650 executes a pixel shader to produce pro-
cessed fragment data, which is then blended with other pro-
cessed fragment data and written to the frame buffer in
memory 604. The vertex shader program and pixel shader
program may execute concurrently, processing different data

10

15

20

25

30

40

45

50

55

60

12

from the same scene in a pipelined fashion until all of the
model data for the scene has been rendered to the frame
buffer.

The PPU 600 may be included in a desktop computer, a
laptop computer, a tablet computer, a smart-phone (e.g., a
wireless, hand-held device), personal digital assistant (PDA),
a digital camera, a hand-held electronic device, and the like.
In one embodiment, the PPU 600 is embodied on a single
semiconductor substrate. In another embodiment, the PPU
600 is included in a system-on-a-chip (SoC) along with one or
more other logic units such as a reduced instruction set com-
puter (RISC) CPU, a memory management unit (MMU), a
digital-to-analog converter (DAC), and the like.

In one embodiment, the PPU 600 may be included on a
graphics card that includes one or more memory devices 604
such as GDDRS SDRAM. The graphics card may be config-
ured to interface with a PCle slot on a motherboard of a
desktop computer that includes, e.g., a northbridge chipset
and a southbridge chipset. In yet another embodiment, the
PPU 600 may be an integrated graphics processing unit
(iGPU) included in the chipset (i.e., Northbridge) of the
motherboard.

FIG. 7 illustrates the streaming multi-processor 650 of
FIG. 6, according to one embodiment. As shown in FIG. 7, the
SM 650 includes an instruction cache 705, one or more sched-
uler units 710, a register file 720, one or more processing
cores 750, one or more double precision units (DPUs) 751,
one or more special function units (SFUs) 752, one or more
load/store units (LSUs) 753, an interconnect network 780, a
shared memory/L.1 cache 770, and one or more texture units
790.

As described above, the work distribution unit 620 dis-
patches active grids for execution on one or more SMs 650 of
the PPU 600. The scheduler unit 710 receives the grids from
the work distribution unit 620 and manages instruction sched-
uling for one or more thread blocks of each active grid. The
scheduler unit 710 schedules threads for execution in groups
of parallel threads, where each group is called a warp. In one
embodiment, each warp includes 32 threads. The scheduler
unit 710 may manage a plurality of different thread blocks,
allocating the thread blocks to warps for execution and then
scheduling instructions from the plurality of different warps
on the various functional units (i.e., cores 750, DPUs 751,
SFUs 752, and L.SUs 753) during each clock cycle.

In one embodiment, each scheduler unit 710 includes one
ormore instruction dispatchunits 715. Each dispatch unit 715
is configured to transmit instructions to one or more of the
functional units. In the embodiment shown in FIG. 7, the
scheduler unit 710 includes two dispatch units 715 that enable
two different instructions from the same warp to be dis-
patched during each clock cycle. In alternative embodiments,
each scheduler unit 710 may include a single dispatch unit
715 or additional dispatch units 715.

Each SM 650 includes a register file 720 that provides a set
of registers for the functional units of the SM 650. In one
embodiment, the register file 720 is divided between each of
the functional units such that each functional unit is allocated
a dedicated portion of the register file 720. In another embodi-
ment, the register file 720 is divided between the different
warps being executed by the SM 650. The register file 720
provides temporary storage for operands connected to the
data paths of the functional units.

Each SM 650 comprises L. processing cores 750. In one
embodiment, the SM 650 includes a large number (e.g., 192,
etc.) of distinct processing cores 750. Each core 750 is a
fully-pipelined, single-precision processing unit that includes
afloating point arithmetic logic unit and an integer arithmetic

US 9,071,765 B2

13

logic unit. In one embodiment, the floating point arithmetic
logic units implement the IEEE 754-2008 standard for float-
ing point arithmetic. Each SM 650 also comprises M DPUs
751 that implement double-precision floating point arith-
metic, N SFUs 752 that perform special functions (e.g., copy
rectangle, pixel blending operations, and the like), and P
LSUs 753 that implement load and store operations between
the shared memory/L1 cache 770 and the register file 720. In
one embodiment, the SM 650 includes 64 DPUs 751, 32
SFUs 752, and 32 LSUs 753.

Each SM 650 includes an interconnect network 780 that
connects each of the functional units to the register file 720
and the shared memory/L.1 cache 770. In one embodiment,
the interconnect network 780 is a crossbar that can be con-
figured to connect any of the functional units to any of the
registers in the register file 720 or the memory locations in
shared memory/L.1 cache 770.

In one embodiment, the SM 650 is implemented within a
GPU. In such an embodiment, the SM 650 comprises J texture
units 790. The texture units 790 are configured to load texture
maps (i.e., a 2D array of texels) from the memory 604 and
sample the texture maps to produce sampled texture values
for use in shader programs. The texture units 790 implement
texture operations such as anti-abasing operations using mip-
maps (i.e., texture maps of varying levels of detail). In one
embodiment, the SM 650 includes 16 texture units 790.

The PPU 600 described above may be configured to per-
form highly parallel computations much faster than conven-
tional CPUs. Parallel computing has advantages in graphics
processing, data compression, biometrics, stream processing
algorithms, and the like.

FIG. 8 illustrates an exemplary system 800 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 800 is provided including at least one central processor
801 that is connected to a communication bus 802. The com-
munication bus 802 may be implemented using any suitable
protocol, such as PCI (Peripheral Component Interconnect),
PCI-Express, AGP (Accelerated Graphics Port), HyperTrans-
port, or any other bus or point-to-point communication pro-
tocol(s). The system 800 also includes a main memory 804.
Control logic (software) and data are stored in the main
memory 804 which may take the form of random access
memory (RAM).

The system 800 also includes input devices 812, a graphics
processor 806, and a display 808, i.e. a conventional CRT
(cathode ray tube), LCD (liquid crystal display), LED (light
emitting diode), plasma display or the like. User input may be
received from the input devices 812, e.g., keyboard, mouse,
touchpad, microphone, and the like. In one embodiment, the
graphics processor 806 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user.

The system 800 may also include a secondary storage 810.
The secondary storage 810 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy

10

25

35

40

45

55

14
disk drive, a magnetic tape drive, a compact disk drive, digital
versatile disk (DVD) drive, recording device, universal serial
bus (USB) flash memory. The removable storage drive reads
from and/or writes to a removable storage unit in a well-
known manner.

Computer programs, or computer control logic algorithms,
may be stored in the main memory 804 and/or the secondary
storage 810. Such computer programs, when executed,
enable the system 800 to perform various functions. The
memory 804, the storage 810, and/or any other storage are
possible examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the central processor 801, the graphics processor
806, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the central processor
801 and the graphics processor 806, a chipset (i.e., a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte-
grated circuit for that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 800 may take the form of a desktop
computer, laptop computer, server, workstation, game con-
soles, embedded system, and/or any other type of logic. Still
yet, the system 800 may take the form of various other devices
including, but not limited to a personal digital assistant (PDA)
device, a mobile phone device, a television, etc.

Further, while not shown, the system 800 may be coupled
to a network (e.g., a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network, or
the like) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method comprising:

capturing image sensor data from an interleaved image

sensor that includes a first portion of pixels exposed for

a first exposure time and a second portion of pixels

exposed for a second exposure time that is less than the

first exposure time by:

resetting the pixels in the first portion at a first reset time,

resetting the pixels in the second portion at a second
reset time, and

sampling the pixels in the first portion and the second
portion after a sampling time has elapsed since the
first reset time;

receiving the image sensor data from the interleaved image

sensor;
identifying a first subset of pixels in the second portion
having an intensity value above a first threshold value;

identifying a second subset of pixels in the first portion
having an intensity value below a second threshold
value; and

generating high-dynamic range (HDR) data based on the

first subset and the second subset,

wherein the difference between the sampling time and the

first reset time is equal to the first exposure time and the

US 9,071,765 B2

15

difference between the sampling time and the second
reset time is equal to the second exposure time.

2. The method of claim 1, wherein the interleaved image
sensor includes a Bayer pattern color filter array arranged in
a plurality of quad rows, and wherein the first portion com-
prises odd quad rows of the interleaved image sensor and the
second portion comprises even quad rows of the interleaved
image sensor.

3. The method of claim 1, wherein identifying the first
subset of pixels in the second portion comprises generating a
first mask that identifies the pixels in the second portion that
have an intensity value greater than the first threshold value,
and wherein identifying the second subset of pixels in the first
portion comprises generating a second mask that identifies
the pixels in the first portion that have an intensity value less
than the second threshold value.

4. The method of claim 1, wherein generating high-dy-
namic range data comprises generating an intensity value for
each pixel in the HDR data by:

determining whether a corresponding pixel associated with

an index for the pixel is included in the first portion or the
second portion; and

if the corresponding pixel is included in the first portion,

then:

determining whether a neighboring pixel of the corre-
sponding pixel is included in the first subset, and

if the neighboring pixel is included in the first subset,
then generating the intensity value for the pixel by
filtering one or more sampled values in the second
portion, or

if the neighboring pixel is not included in the first subset,
then generating the intensity value for the pixel by
selecting the intensity value for the corresponding
pixel; or

ifthe corresponding pixel is included in the second portion,

then:

determining whether the neighboring pixel is included
in the second subset, and

if the neighboring pixel is included in the second subset,
then generating the intensity value for the pixel by
filtering one or more sampled values in the first por-
tion to generate a filtered value and scaling the filtered
value, or

if the neighboring pixel is not included in the second
subset, then generating the intensity value for the
pixel by scaling the intensity value for the correspond-
ing pixel by an exposure ratio.

5. The method of claim 4, wherein determining whether the
neighboring pixel is included in the first subset comprises
sampling a first mask, and wherein determining whether the
neighboring pixel is included in the second subset comprises
sampling a second mask.

6. The method of claim 5, wherein the first mask is gener-
ated by performing a comparison operation between the
intensity level of the neighboring pixel and the first threshold
value, and wherein the second mask is generated by perform-
ing a comparison operation between the intensity level of the
neighboring pixel and the second threshold value.

7. The method of claim 4, wherein filtering comprises
performing a linear interpolation between two sampled val-
ues.

8. The method of claim 4, wherein filtering comprises
taking a weighted sum of a plurality of sampled values.

9. The method of claim 4, wherein filtering is combined
with demosaic processing that is based on the weighted sum
of a plurality of sampled values.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

10. The method of claim 1, further comprising modifying
the HDR data by companding the HDR data.

11. The method of claim 10, further comprising transmit-
ting the modified HDR data to an image signal processor that
is configured to perform at least one of the functions of noise
reduction, demosaicing, color conversion, and gamma cor-
rection.

12. The method of claim 1, further comprising:

identifying a third subset of pixels in the second portion

having an intensity value above a third threshold value
and below the first threshold value;

identifying a fourth subset of pixels in the first portion

having an intensity value below a fourth threshold value
and above a second threshold value;

determining that a neighboring pixel is included in the third

subset, then blending a first intensity value for the pixel
generated by filtering one or more values in the second
portion with a second intensity value for the pixel gen-
erated by selecting the intensity value for a correspond-
ing pixel; and

determining that a neighboring pixel is included in the

fourth subset, then blending a third intensity value for
the pixel by filtering one or more values in the first
portion with a fourth intensity value for the pixel gener-
ated by scaling the intensity value for the corresponding
pixel by an exposure ratio.

13. The method of claim 12, wherein blending comprises
performing a linear interpolation based on the intensity value
of the neighboring pixel.

14. A non-transitory computer-readable storage medium
storing instructions that, when executed by a processor, cause
the processor to perform steps comprising:

capturing image sensor data from an interleaved image

sensor that includes a first portion of pixels exposed for

a first exposure time and a second portion of pixels

exposed for a second exposure time that is less than the

first exposure time by:

resetting the pixels in the first portion at a first reset time,

resetting the pixels in the second portion at a second
reset time, and

sampling the pixels in the first portion and the second
portion after a sampling time has elapsed since the
first reset time;

receiving the image sensor data from the interleaved image

sensor;
identifying a first subset of pixels in the second portion
having an intensity value above a first threshold value;

identifying a second subset of pixels in the first portion
having an intensity value below a second threshold
value; and

generating high-dynamic range (HDR) data based on the

first subset and the second subset,

wherein the difference between the sampling time and the

first reset time is equal to the first exposure time and the
difference between the sampling time and the second
reset time is equal to the second exposure time.

15. The non-transitory computer-readable storage medium
of claim 14, wherein generating high-dynamic range data
comprises generating an intensity value for each pixel in an
HDR image by:

determining whether a corresponding pixel associated with

an index for the pixel is included in the first portion or the
second portion; and

if the corresponding pixel is included in the first portion,

then:
determining whether a neighboring pixel of the corre-
sponding pixel is included in the first subset, and

US 9,071,765 B2

17

if the neighboring pixel is included in the first subset,
then generating the intensity value for the pixel by
filtering one or more values in the second portion, or

if the neighboring pixel is not included in the first subset,
then generating the intensity value for the pixel by
scaling the intensity value for the corresponding pixel
by an exposure ratio; or

ifthe corresponding pixel is included in the second portion,

then:

determining whether the neighboring pixel is included
in the second subset, and

if the neighboring pixel is included in the second subset,
then generating the intensity value for the pixel by
filtering one or more values in the first portion, or

if the neighboring pixel is not included in the second
subset, then generating the intensity value for the
pixel by selecting the intensity value for the corre-
sponding pixel.

16. The non-transitory computer-readable storage medium
of claim 15, wherein filtering comprises performing a linear
interpolation between two sampled values.

17. A system, comprising:

an interleaved image sensor that includes a first portion of

pixels exposed for a first exposure time and a second
portion of pixels exposed for a second exposure time that
is less than the first exposure time, the interleaved image
sensor configured to capture image sensor data by:
resetting the pixels in the first portion at a first reset time,
resetting the pixels in the second portion at a second
reset time, and
sampling the pixels in the first portion and the second
portion after a sampling time has elapsed since the
first reset time; and

an image processing pipeline coupled to the interleaved

image sensor and configured to:

receive the image sensor data from the interleaved image
sensor,

identify a first subset of pixels in the second portion
having an intensity value above a first threshold value,

18

identify a second subset of pixels in the first portion
having an intensity value below a second threshold
value, and

generate high-dynamic range (HDR) data based on the
first subset and the second subset,

wherein the difference between the sampling time and the

first reset time is equal to the first exposure time and the
difference between the sampling time and the second
reset time is equal to the second exposure time.

18. The system of claim 17, wherein generating high-
dynamic range data comprises generating an intensity value
for each pixel in an HDR image by:

determining whether a corresponding pixel associated with

an index for the pixel is included in the first portion or the
second portion; and

if the corresponding pixel is included in the first portion,

then:

determining whether a neighboring pixel of the corre-
sponding pixel is included in the first subset, and

if the neighboring pixel is included in the first subset,
then generating the intensity value for the pixel by
filtering one or more values in the second portion, or

if the neighboring pixel is not included in the first subset,
then generating the intensity value for the pixel by
scaling the intensity value for the corresponding pixel
by an exposure ratio; or

ifthe corresponding pixel is included in the second portion,

then:

determining whether the neighboring pixel is included
in the second subset, and

if the neighboring pixel is included in the second subset,
then generating the intensity value for the pixel by
filtering one or more values in the first portion, or

if the neighboring pixel is not included in the second
subset, then generating the intensity value for the
pixel by selecting the intensity value for the corre-
sponding pixel.

19. The system of claim 17, wherein the image processing
pipeline is implemented as a shader program configured to be
executed by a graphics processing unit (GPU).

#* #* #* #* #*

